

Draft Community
Resilience Planning
Guide – Informational
Briefing

Purpose of This Briefing

- Build awareness of the draft NIST Community Resilience Planning Guide among key stakeholders.
- Invite comments so that we can improve the draft Guide and make it most useful for communities.
- Encourage use of the Guide when V1.0 is released in September.

NIST Special Publication 1190

Community Resilience Planning Guide for Buildings and Infrastructure Systems

Volume I

Draft for Public Comment

This Publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP.1190v1

NIST Special Publication 1190

Community Resilience Planning Guide for Buildings and Infrastructure Systems

Volume II

Draft for Public Comment

This Publication is available free of charge from: http://dx.doi.org/10.6028/NIST.SP.1190v2

> National Institute of Standards and Technology U.S. Department of Commerce

Why Resilience Planning?

- All communities face potential disruption from natural, technological, and human-caused hazards.
- Disasters take a high toll in lives, livelihoods, and quality of life that can be reduced by better managing disaster risks.
- Planning and implementing prioritized
 measures can strengthen resilience and
 improve a community's ability to continue or
 restore vital services in a more timely way –
 and to build back better.

Why ResiliencePlanning? (Cont.)

- The built environment exists to serve a social function (e.g., a hospital provides healthcare).
 Therefore, social and economic needs and functions should drive the goals for performance of buildings and physical infrastructure.
- The draft NIST Community Resilience Planning Guide provides a *practical, flexible* methodology to better set priorities and allocate resources to reduce risks by improving their resilience.

Guide Development Process

Workshop

NIST

Planning Guide Overview

The Guide helps communities:

- Organize effectively to address resilience risks, goals, and priorities.
- Determine customized long-term resilience goals.
- Develop short- and long-term plans for buildings and infrastructure systems to achieve resilience goals.
- Prioritize improvements to the built environment based on their role in supporting social institutions and economic functions during recovery.
- Address infrastructure dependencies and cascading effects of system failures.

Planning Steps for Community Resilience

- 1. Form a collaborative planning team
- 2. Understand the situation
 - Social Dimensions
 - Built Environment
- 3. Determine goals and objectives
- 4. Plan development
- 5. Plan preparation, review, and approval
- 6. Plan implementation and maintenance

Downtown Cedar Rapids, Iowa, during the 2008 floods

Recovery and Reinvestment Plan

Step 1. Form a Collaborative Planning Team

Public

- Elected Officials
- Local Government
- Community Members

Private

- Business and Services
 - Banking, Health care
 - Utilities
 - Media
- Organizations
 - NGOs (VOAD, Relief)

Step 2. Understand the Situation

Characterize the Social Dimensions

- Community members
 - Present and future needs
 - Demographics and economic indicators
 - Social Capital/Social Vulnerabilities
- Social institutions
 - Social functions
 - Gaps in capacity
 - Dependencies on other institutions
- Community metrics

Communities

Neighborhoods

Characterize the Built Environment

Buildings

Individual structures, including equipment and contents that house people and support social institutions

Building Clusters

A set of buildings that serve a common function such as housing, healthcare, retail, etc.

Infrastructure Systems

Physical networks and structures that support social institutions, including transportation, energy, communications, water and waste water systems

Dependencies

Internal and External, Time, Space, Source

Characterize

Location, number, construction, demands and use, etc.

Link Social Dimensions and Built Environment

Some rely more on the built environment

Industrial Plants

Some functions change

Schools ---> Shelters

Identify how services are supported

- Services provided to meet needs
- Dependency on other services and systems
- Dependency on built environment
- Consequences of loss

Step 3. Determine Goals and Objectives

Establish Long Term Community Goals

- Long term goals to improve the community can guide the prioritization and implementation process.
 - Improve reliability of infrastructure systems
 - Enhance community functions
 - Reduce travel time impacts to residents and businesses
 - Revitalize an existing blighted area
- Community resilience is achieved over time
 - Resilience can be achieved with resources for current maintenance and capital improvements

Establish Desired Performance Goals for the Built Environment

- Performance goals are independent of hazard events.
 - Community functions are needed during recovery, such as acute health care, 911 call centers, emergency response
 - Consider role of a facility or system that impacts others outside the community.
- Define goals in terms of 'time needed to restore functionality'.
- Use goals to help prioritize repair and reconstruction efforts.
- Goals may suggests criteria for new construction and retrofit of existing construction.

Recovery of the Built Environment

Organize around restoring functionality over time

When is each system needed for recovery?

Determine and Characterize Hazards

Identify prevalent hazards

- Wind, Earthquake, Inundation
- Fire, Snow, Rain
- Human-caused or Technological

Evaluate 3 hazard levels

- Routine Level expected to occur frequently
- Expected Level used to design buildings
- Extreme Maximum considered possible

Anticipated Performance of Existing Built Environment

- Anticipated performance (restoration of function) during recovery depends
 - Damage level Condition and capacity of structural and nonstructural systems
 - Recovery time Materials,
 equipment, and labor needed
 for restoration
 - Dependencies on other systems that may be damaged

Hurricane Irene

Hurricane Katrina

Example Summary Resilience Matrix

Infrastructure	Recovery Time									
Critical Facilities	Days 0	Days 1	Days 1-3	Wks 1-4	Wks 4-8	Wks 8-12	Mes 4	Mes 4-24	Mos 24+	
Buildings Transportation Energy Water Wastewater Communication Emergency Housing	90%	90% 90% 90%	X X 90%	90% X	X			X)	
Buildings Transportation Energy Water Waste Water	Desired Anticipated Performance									
Communication				90%	X					
Housing/Neighborhoods Buildings						90%			X	
Transportation Energy			90%	X X						
Water				90%				X		
Waste Water Communication				90%	90%		X	X		
Community Recovery				90%			X			
Buildings								90%	X	
Transportation				90%	X					
Energy			90%	X				-		
Waste Water				90%			0.08/	X		
Communication				90%			90% X	Х		

Superstorm Sandy

Step 4. Plan Development Evaluate Gaps and Identify Solutions

Prioritize gaps

- Long-term community goals
- Social needs during recovery
- Identify alternative solutions
 - Multiple stages
 - Temporary and permanent
 - Administrative
 - Construction

Recovery Time									
Days	Days	Days	Wks	Wks	Wks	Mos	Mos	Mos	
0	1	1.3	14	4-8	8-12	4	4-24	24+	
20.0							ļ		
	90%	-							
	90%								
		9000		X					
	90								
	•	90%	Days Days Days 0 1 1-3	Days Days Wks 0 1 1-3 1-4	Days Days Wks Wks 0 1 1-3 1-4 4-8	Days Days Wks Wks Wks 0 1 1-3 1-4 4-8 8-12	Days Days Wks Wks Wks Mos 0 1 1-3 1-4 4-8 8-12 4	Days Days Wks Wks Mes Mes Mes 0 1 1-3 1-4 4-8 8-12 4 4-24	

- Flood plain management
 - Reduce threat: relocate, elevate
- Wind and seismic preparedness
 - Strengthen: retrofit, redundancy
- Recovery Plans
 - Mutual aid agreements
 - Improvement plans

Prioritize Solutions and Develop Implementation Strategy

- Select solutions for prioritized performance gaps
 - Determine how alternative solutions can be combined to meet community goals.
 - Consider collaborative projects.
- Develop implementation strategies
 - Quantify benefits of impact on public safety and social needs.
 - Evaluate economic impacts on community costs and savings.
 - Consider short- and long-term benefits versus costs.
- Determine preferred implementation strategy

2013 Mandatory Soft Story Retrofit program for all older, wood-framed, multi-family buildings ensures the safety and resilience of San Francisco.

North Texas 2050 plan integrates land use, natural resources, transportation, housing, water and wastewater infrastructure, parks and open spaces.

Step 5. Plan Preparation, Review, and Approval

Plan Approval

- Document proposed implementation strategy and supporting assessments and solutions.
- Share with all stakeholders and community members
 - Public Meetings, review and comment period.
- Finalize and approve community plan.

APPROVED

Final
Community
Plan:
Implementation
Strategy

Step 6. Plan Implementation and Maintenance

Implementation

- Formally adopt community plan to guide local government and agencies
- Identify and obtain resources to implement solutions
- Track and communicate progress to stakeholders

Plan Maintenance

- Review strategy and solutions on a regular basis
- Modify or update as needed

Guide Outline

Volume 1 - Methodology

Executive Summary

Ch 1. Introduction

Ch 2-6. Methodology and Planning Steps

Ch 7. Future Directions

Appendix: Planning Example – Riverbend, USA

Volume 2 - Reference

Executive Summary

Ch 9. Social Community

Ch 10. Dependencies and Cascading Effects

Ch 11. Buildings

Ch 12. Transportation Systems

Ch 13. Energy Systems

Ch 14. Communications Systems

Ch 15. Water & Wastewater Systems

Ch. 16 Community Resilience Metrics

Next Steps

Public Comment and Version 1.0

- Public comments encouraged through June 26.
- Update Guide based on comments with planned release in September 2015

Disaster Resilience Panel

- Focus on identifying gaps in practice and knowledge
- Develop supporting guidance and best practices to help users of the Guide.
- First meeting planned for Fall 2015

Support Use of the Guide

- How to best work with communities interested in using the Guide?
- Gather feedback to support revisions to Guide

NIST Contact

Website:

http://www.nist.gov/el/building_materials/resilience/

Guide:

http://www.nist.gov/el/building_materials/resilience/guide.cfm

Or google "NIST Resilience Planning Guide"

General E-mail: resilience@nist.gov

Questions?